MBS SERIES BREATHING AIR SYSTEM

GAS GENERATION SYSTEMS

High-quality compressed air is highly important for many industries, as it has a vital impact in the breathing air applications. Mikropor breathing air purifiers are designed to eliminate hazardous substances in the air conforming to related standards. (Mikropor Breathing Air Purifiers are designed for protection against a range of contaminants that may be present in a compressed air fed breathing air system.)

Why Should Purify Compressed Air?

In systems using compressed air, the ambient air is fed to the compressor. The polluted compressed ambient air remains in the system as long as the incoming air polluting components are not removed.

Where Would You Use Breathing Air Purifier?

Hazardous air pollutants can be released to environment with several applications in various industries. In these industries, it is crucial to eliminate the air pollutants.

Application Areas

- Shot-blasting
- Spray painting
- Tunnelling
- Confined spaces
- Welding
- Asbestos removal
- Tank cleaning
- Pharmaceutical manufacturing
- High-pressure cylinder filling
- Hospitals

International Breathing Air Standards

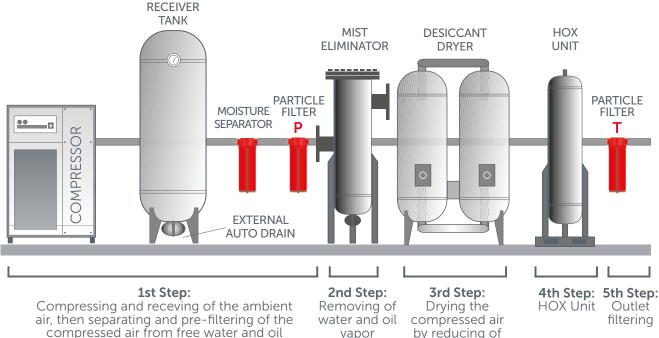
The atmospheric air breathing by livings is composed of approximately 78 percent nitrogen, 21 percent oxygen, and 1 percent with small amounts of many other trace components such as argon, hydrogen, and carbon dioxide. In this regard, for the high-quality breathing air, there are relatively standards including the allowable limits of the specification for each component in the breathing air system.

The Breathing Air Purifiers produced by Mikropor comply with the international standards, correlatively.

- OHSA Grade D
- BS 4275
- NFPA-99
- European Pharmacopoeia
- CSA Z180.1-00
- EN ISO 7396-1:2016
- CGA G7.1-1997
- ISO 14971
- EN 12021

MBS SERIES BREATHING AIR SYSTEM

Working Principle


1st Step: Water and the oil droplets in the compressed air separated with help of the moisture and particle separators down to 1 micron.

2nd Step: Removing water and oil vapour down to 0.01 mg/m³ with Mikropor Mist Eliminator

3rd Step: Reducing with a heatless desiccant dryer of moisture content to a pressure dew point of -40°C / -40°F, removing any risk of condensation, bacteria, and mold growth.

4th Step: In HOX unit oil vapour and odour are eliminated with activated carbon granules and, CO gas in the air is converted to CO₂ down to 0.003ppm with the catalyst granules in the unit.

5th Step: Removal of the remaining dust particles down to 0.01 micron.

compressed air from free water and oil

by reducing of moisture content

Desiccants and Catalysts for Removal Impurities

Component	Hazardous	Desiccant/Catalyst
Water/Moisture	Moisture inside compressed breathing air can freeze, causing damage to the cylinder or regulator equipment. Can degrade the catalyst system filter system, reduce the lifetime of the Activated Carbon.	Activated Alumina & Molecular sieve
Hydrocarbons, Oils, and Odor	Carcinogenic and the oils may build up over time in the lungs.	Activated Carbon
Carbon Monoxide	Binds with hemoglobin in the body and disrupts the flow of oxygen to the body, resulting in death at high exposure.	H-OX Catalyst

MBS SERIES BREATHING AIR SYSTEM

Model	Сара		Connection	Mist Eliminator	Particle (T) Filter	T Filter Element	Max. Working	Voltage
	(m³/h)	(scfm)	Size	Model	Model		Pressure (bar)	
MBS 5	10	5	1/2"	G-ELM-100	GON-35	MON35	16	115-240V/50-60Hz
MBS 10	20	10	1/2"	G-ELM-100	GON-35	MON35	16	115-240V/50-60Hz
MBS 15	25	15	1/2"	G-ELM-100	GON-35	MON35	16	115-240V/50-60Hz
MBS 20	35	20	1/2"	G-ELM-100	GON-55	MON55	16	115-240V/50-60Hz
MBS 25	45	25	1/2"	G-ELM-150	GON-55	MON55	16	115-240V/50-60Hz
MBS 30	50	30	1/2"	G-ELM-200	GON-55	MON55	16	115-240V/50-60Hz
MBS 40	70	40	11/2"	G-ELM-250	GON-300	MON300	16	115-240V/50-60Hz
MBS 50	85	50	11/2"	G-ELM-300	GON-300	MON300	16	115-240V/50-60Hz
MBS 60	100	60	11/2"	G-ELM-500	GON-300	MON300	16	115-240V/50-60Hz
MBS 75	130	75	11/2"	G-ELM-600	GON-300	MON300	16	115-240V/50-60Hz
MBS 100	170	100	11/2"	G-ELM-851	GON-300	MON300	16	115-240V/50-60Hz
MBS 120	200	120	11/2"	G-ELM-1210	GON-300	MON300	16	115-240V/50-60Hz
MBS 180	300	180	11/2"	ELM-300	GON-300	MON300	16	115-240V/50-60Hz
MBS 240	400	240	11/2"	ELM-300	GON-500	MON500	16	115-240V/50-60Hz
MBS 250	440	250	11/2"	ELM-300	GON-500	MON500	16	115-240V/50-60Hz
MBS 300	575	300	11/2"	ELM-600	GON-600	MON600	16	115-240V/50-60Hz
MBS 400	680	400	2"	ELM-600	GON-800	MON800	16	115-240V/50-60Hz
MBS 500	850	500	2"	ELM-600	GON-1000	MON1000	16	115-240V/50-60Hz
MBS 600	1000	600	2"	ELM-600	GON-1200	MON1200	16	115-240V/50-60Hz
MBS 700	1250	700	DN80	ELM-800	GON-HC-1550	MONHC1550	20	115-240V/50-60Hz
MBS 800	1500	800	DN80	ELM-1200	GON-HC-1550	MONHC1550	20	115-240V/50-60Hz
MBS 1000	1800	1000	DN80	ELM-1200	GON-HC-2000	MONHC2000	20	115-240V/50-60Hz
MBS 1250	2200	1250	DN80	ELM-1600	GON-HC-2700	MONHC2700	20	115-240V/50-60Hz

Given flows are at 7 barg pressure with reference to 20°C and 1 bar atmospheric air suction as per ISO7183.

Correction Factor for MBS

Inlet Temperature		F1	Pres	F2		
(°C)	(°F)	LT		(barg)	(psig)	ΓZ
20	68	1		4.5	65	0.69
25	77	1		5	73	0.75
30	86	1		6	87	0.88
35	95	1		7	100	1
40	104	0.8		8	116	1.12
45	113	0.73		9	131	1.25
50	122	0.59		10	145	1.25
-	-	-		11	160	1.5
-	-	-		12	174	1.62
-	-	-		13	189	1.74
-	-	-		14	203	1.87
-	-	-		15	218	1.99
-	-	-		16	232	2.11

Contaminants	BS EN 12021:2014	European Pharmacopoeia	OHSA Grade D
Water	-	67 ppm (-49°F atmospheric dew point)	-
Oil/Lubricant	<0.5 ppm	0.1 ppm	5 ppm
Carbon Dioxide (CO ₂)	<500 ppm	<500 ppm	<1000 ppm
Carbon Monoxide (CO)	≤ 15 ppm	<5 ppm	<10 ppm
Nitrogen Oxides (NO+NO ₂)	-	<2 ppm	-
Sulphur Dioxide (SO ₂)	-	<1 ppm	-
Oxygen (O ₂)	21 <u>+</u> 1%	21 <u>+</u> 1	-
Taste and Odor	-	Free	-

102 www.mikropor.com